R.S.ACADEMY OF BRILLIANCE

#443, 7TH MAIN, 13TH CROSS, BENGALURU-560078 10TH CBSE- MATHEMATICS ASSIGNMENT

SECTION - A

Date: 10/06/2018									
Multiple choice Questions (MCQs):									
1.	The Zeroes of the quadratic polynomial x ² + 99x + 127 are:								
	(A) Both positive	9		(B) Both negative					
	(C) One positive	and one ne	egative	(D) both equal					
2.	If α , β are zeroe								
	(A) 3		(B) 5	(C) -5	(D)	-3			
3.	If α , β are zeroes of polynomial f(x) = x ² +px + q then polynomial having $\frac{1}{a} + \frac{1}{\beta} \alpha \beta$ is zeroe								
	(A) $x^2 + qx + p$	(B)) x ² - px + q	C)) $qx^2 + px + 1$	(D)) px ²	+ qx + 1			
4	4 If α and β are the zeroes of polynomial $5x^2$, $7x + 2$ than sum of their reciprocals is:								
	$(\Lambda) \frac{7}{2}$		(P) ⁷	$(C)^{\frac{2}{2}}$	(ח) <u>14</u>	1			
	$(A) = \frac{1}{2}$		$(D) \frac{1}{5}$	$(C) \frac{1}{5}$	(D) <u>25</u>	5			
5.	The quadratic polynomial $p(x)$ with -81 and 3 as product and one of the zeroes respectively is :								
5.	(A) $x^2 + 24x - 82$	1		(B) x ² - 24x - 81		copectively is i			
	(C)) $x^2 - 24x + 8$	1		(D) x ² +24x +81					
6.	6. The graph of $y = p(x)$ given below. The number of zeroes of $p(x)$ are:								
						y ↑			
					(
					* *'	0 /×			
	(A) 0	(B) 2	(C) 4	(D) 3		y '			
7 If 1 is zero of the polynomial $p(x) = ax^2 - 3(a-1)x - 1$ then the value of 'a' is									
	(A) 1	e porynon	(B) -1	(C) 2	(D)	-2			
	, _		\- <i>\</i> =	(-) -	(-)	-			
-		c 2 -							

8. If α , β are zeroes of x^2 -6x + k. what is the value of k if $3\alpha + 2\beta = 20$ (A) -16 (B) 8 (C) - 2 (D) -8

9.	one zero of $2x^2 - 3x + k$ is reciprocal to the other, then the value of k is;							
	(A) 2	(B) $\frac{-2}{3}$	(C) $\frac{-3}{2}$	(D) – 3				
10.	. The number of polynomials having zeros -2 and 5 is:							
	(A) 1	(B) 2	(C) 3	(D) more than 3				
11	The value of a for which the	nolynomial						
11.	1. The value of p for which the polynomial $x^3 + 4x^2 = PX + 8$ is exactly divisible by $(x - 2)$ is							
12.	The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is - 2 is:							
	(A) $x^2 + 3x - 2$ (B) x	² - 2x +3 (C) x ² - 3x + 3	(D) x ² -3x - 2				
13.	If one of the zeroes of the c	uadratic polynomial	(k - 1) x ² + kx + 1 is -3	, then the value of k is				
	(A) -4/3 (B)	4/3	(C) 2/3	(D) -2/3				
14.	The number of zeroes for th	ne polynomial y = p (x) from the given grad	oh is:				
	(A) 3	(B) 1	(C) 2	(D) 0				
15.	The degree of the polynomial $(x + 1) (x^2 - x - x^4 + 1)$ is :							
	(A) 2	(B) 3	(C) 4	(D) 5				
16. If A is a correct the network a a b a b								
10.	(A) 3	(B) 9	(C) 6	(D) -9				
	(1) 5							
17.	17. The quadratic polynomial having zeroes are 1 and -2 is :							
	(A) x ² - x + 2 (B) x	² - x - 3 (C)	$x^2 + x - 3$	(D) $x^2 + x + 2$				

<u>SECTION – B</u>

Very Short Answer Type Questions

- 1. If α and β are the zeroes of x²+7x +12, then find have value of $\frac{1}{a} + \frac{1}{\beta} + 2\alpha\beta$.
- 2. Find the zeroes of the quadratic polynomial $2x^2-25$
- 3. Find the zeroes of the quadratic polynomial $4x^2 7$.
- 4. Find a quadratic polynomial whose zeroes are 3 + $\sqrt{5}$ and 3 $\sqrt{5}$.
- 5. If α , β are zeroes of quadratic polynomial $x^2 (k + 6) x + 2 (2k 1)$ find k if $\alpha + \beta = \frac{1}{2} \alpha \beta$.

- 6. Form a quadratic polynomial whose one of the zeroes is +15 and sum of the zeroes is 42.
- 7. Divide $(2x^2 + x 20)$ by (x + 3) and verify division algorithm.
- 8. Find the zeroes of the quadratic polynomial $\sqrt{3x^2}$ 8x + 4 $\sqrt{3}$.
- 9. What must be added to polynomial f (x) = $x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$?
- 10. Find a quadratic polynomial with zeroes 3 + $\sqrt{2}$ and 3 $\sqrt{2}$.
- 11. If α and $\frac{1}{\alpha}$ are the zeroes of the polynomial $4x^2 2x + (k 4)$, find the value of k.
- 12. If being given that 1 is one of the zeroes of the polynomial $7x x^3 6$. Find its other zeroes.
- 13. α , β are the roots of the quadratic polynomial $p(x) = x^2 (k 6) x + (2k + 1)$. Find the value of k, if $\alpha + \beta = \alpha\beta$.
- 14. Find the zeroes of the polynomial $100 x^2 81$.
- 15. Divide the polynomial $p(x) = 3x^2 x^3 3x + 5$ by $g(x) = x 1 x^2$ and find its quotient and remainder.
- 16. Find a quadratic polynomial, the sum of whose zeroes is 7 and their product is 12. Hence find the zeroes of the polynomial.
- 17. Find a quadratic polynomial whose zeroes are 2 and 6. Verify the relation between the coefficients and zeroes of the polynomial.
- 18. Can (x 3) be the remainder on the division of a polynomial p(x) by (2x + 5)? Justify your answer.
- 19. Form a quadratic polynomial p (y) with sum and product of zeroes are 2 and -3/5 respectively.
- 20. Divide $6x^3 + 13x^2 + x 2$ by 2x + 1, and find quotient and remainder.

<u>SECTION – C</u>

Short Answer Type Questions

- 1. If α and β are zeroes of the quadratic polynomial $x^2 6x + a$: find the value of ' α ' if $3\alpha + 2\beta = 20$.
- 2. Check whether the polynomial g (x) = $x^3 3x + 1$ is the factor of polynomial $p(x) = x^5 4x^3 + x^2 + 3x + 1$
- 3. Obtain all zeroes of f (x) = $x^4 3x^3 x^2 + 9x 6$ if two of its zeroes are $(-\sqrt{3})$ and $\sqrt{3}$.
- 4. If α and $\beta \gamma$ are zeroes of f (x) =x⁴ 3x³ x² + 9x 6 if two of its zeroes are (- $\sqrt{3}$) and $\sqrt{3}$.
- 5. If α and β are the zeroes of the polynomial $x^2-5x + k$ such that $\alpha-\beta=1$. Find the value of k
- 6. If α and β are the two zeroes of the polynomial 25 p²-15 p + 2, find a quadratic polynomial whose zeroes are $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$.
- 7. Divide $(6 + 9x + x^2 6x^{3})$ by $(2 + 5x 3x^2)$ and verify the division algorithm.

- 8. If α and β are zeroes of the polynomial x^2-2x-8 , then form a quadratic polynomial whose zeroes are 2α and 2β .
- 9. If α and β are the zeroes of the polynomial $x^2-2x 8$ then form a quadratic polynomial whose zeroes are 3α and 3β .
- 10. If one solution of the equation $3x^2 8x + 2k + 1$ is seven times the other. Find the solutions and the value of k.

<u>SECTION – D</u>

- 1. What must be added to the polynomial $f(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$?
- 2. Find the other zeroes of the polynomial $2x^4 3x^3 3x^2 + 6x 2$ if $-\sqrt{2}$ and $\sqrt{2}$ are the zeroes of the given polynomial.
- 3. If the remainder on division of $x^3 + 2x^2 + kx + 3$ by x 3 is 21, find the quotient and the value of k. Hence, find the zeroes of the cubic polynomial $x^3 + 2x^2 + kx 18$.
- 4. Find all other zeroes of the polynomial $p(x) = 2x^3 + 3x^2 11x 6$, if one of its zero is -3.
- 5. Divide $30x^4 + 11x^3 82x^2 12x + 48$ by $(3x^2 + 2x 4)$ and verify the result by division algorithm.
- 6. Find all the zeroes of the polynomial $x^4 5x^3 + 2x^2 + 10x 8$, if two of its zeroes Are $-\sqrt{2}$ $\sqrt{2}$.
- 7. Find all the zeroes of the polynomial $x^4 + x^3 9x^2 3x + 18$, if two of its zeroes Are $\sqrt{3} - \sqrt{3}$.
- 8. Obtain all the zeroes of $x^4 7x^3 + 17x^2 17x + 6$ if two of its zeroes are 1 and 2.
- 9. Find all the zeroes of the polynomial $2x^4 10x^3 + 5x^2 + 12$, if it is given that two of its
 - zeros are $\sqrt{\frac{3}{2}}$ and $-\sqrt{\frac{3}{2}}$
- 10. Find all zeroes of polynomial $4x^4 20x^3 + 23x^2 + 5x 6$, if two of its zeroes are 2 and 3.
